
Libidn2 Reference Manual i

Libidn2 Reference Manual

Libidn2 Reference Manual ii

COLLABORATORS

TITLE :

Libidn2 Reference Manual

ACTION NAME DATE SIGNATURE

WRITTEN BY December 30, 2016

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Libidn2 Reference Manual iii

Contents

1 Libidn2 Overview 1

1.1 idn2 . 1

2 Index 12

Libidn2 Reference Manual 1 / 12

Chapter 1

Libidn2 Overview

Libidn2 is a free software implementation of IDNA2008.

1.1 idn2

idn2 —

Functions

int idn2_lookup_u8 ()
int idn2_register_u8 ()
int idn2_lookup_ul ()
int idn2_register_ul ()
const char * idn2_strerror ()
const char * idn2_strerror_name ()
const char * idn2_check_version ()
void idn2_free ()

Types and Values

#define IDN2_VERSION
#define IDN2_VERSION_NUMBER
#define IDN2_LABEL_MAX_LENGTH
#define IDN2_DOMAIN_MAX_LENGTH
enum idn2_flags
enum idn2_rc

Description

Functions

idn2_lookup_u8 ()

int
idn2_lookup_u8 (const uint8_t *src,

uint8_t **lookupname,

Libidn2 Reference Manual 2 / 12

int flags);

Perform IDNA2008 lookup string conversion on domain name src , as described in section 5 of RFC 5891. Note that the input
string must be encoded in UTF-8 and be in Unicode NFC form.

Pass IDN2_NFC_INPUT in flags to convert input to NFC form before further processing. Pass IDN2_ALABEL_ROUNDTRIP
in flags to convert any input A-labels to U-labels and perform additional testing. Pass IDN2_TRANSITIONAL to enable
Unicode TR46 transitional processing, and IDN2_NONTRANSITIONAL to enable Unicode TR46 non-transitional processing.
Multiple flags may be specified by binary or:ing them together, for example IDN2_NFC_INPUT | IDN2_NONTRANSITIONAL.

After version 0.11: lookupname may be NULL to test lookup of src without allocating memory.

Parameters

src
input zero-terminated
UTF-8 string in Unicode
NFC normalized form.

lookupname
newly allocated output
variable with name to
lookup in DNS.

flags optional idn2_flags to
modify behaviour.

Returns

On successful conversion IDN2_OK is returned, if the output domain or any label would have been too long IDN2_TOO_BIG_DOMAIN
or IDN2_TOO_BIG_LABEL is returned, or another error code is returned.

idn2_register_u8 ()

int
idn2_register_u8 (const uint8_t *ulabel,

const uint8_t *alabel,
uint8_t **insertname,
int flags);

Perform IDNA2008 register string conversion on domain label ulabel and alabel , as described in section 4 of RFC 5891.
Note that the input ulabel must be encoded in UTF-8 and be in Unicode NFC form.

Pass IDN2_NFC_INPUT in flags to convert input ulabel to NFC form before further processing.

It is recommended to supply both ulabel and alabel for better error checking, but supplying just one of them will work.
Passing in only alabel is better than only ulabel . See RFC 5891 section 4 for more information.

After version 0.11: insertname may be NULL to test conversion of src without allocating memory.

Parameters

ulabel
input zero-terminated
UTF-8 and Unicode NFC
string, or NULL.

alabel
input zero-terminated ACE
encoded string (xn--), or
NULL.

insertname
newly allocated output
variable with name to
register in DNS.

Libidn2 Reference Manual 3 / 12

flags optional idn2_flags to
modify behaviour.

Returns

On successful conversion IDN2_OK is returned, when the given ulabel and alabel does not match each other IDN2_UALABEL_MISMATCH
is returned, when either of the input labels are too long IDN2_TOO_BIG_LABEL is returned, when alabel does does not appear
to be a proper A-label IDN2_INVALID_ALABEL is returned, or another error code is returned.

idn2_lookup_ul ()

int
idn2_lookup_ul (const char *src,

char **lookupname,
int flags);

Perform IDNA2008 lookup string conversion on domain name src , as described in section 5 of RFC 5891. Note that the input
is assumed to be encoded in the locale’s default coding system, and will be transcoded to UTF-8 and NFC normalized by this
function.

Pass IDN2_ALABEL_ROUNDTRIP in flags to convert any input A-labels to U-labels and perform additional testing. Pass
IDN2_TRANSITIONAL to enable Unicode TR46 transitional processing, and IDN2_NONTRANSITIONAL to enable Unicode
TR46 non-transitional processing. Multiple flags may be specified by binary or:ing them together, for example IDN2_ALABEL_ROUNDTRIP
| IDN2_NONTRANSITIONAL. The IDN2_NFC_INPUT in flags is always enabled in this function.

After version 0.11: lookupname may be NULL to test lookup of src without allocating memory.

Parameters

src input zero-terminated locale
encoded string.

lookupname
newly allocated output
variable with name to
lookup in DNS.

flags optional idn2_flags to
modify behaviour.

Returns

On successful conversion IDN2_OK is returned, if conversion from locale to UTF-8 fails then IDN2_ICONV_FAIL is returned, if
the output domain or any label would have been too long IDN2_TOO_BIG_DOMAIN or IDN2_TOO_BIG_LABEL is returned,
or another error code is returned.

idn2_register_ul ()

int
idn2_register_ul (const char *ulabel,

const char *alabel,
char **insertname,
int flags);

Perform IDNA2008 register string conversion on domain label ulabel and alabel , as described in section 4 of RFC 5891.
Note that the input ulabel is assumed to be encoded in the locale’s default coding system, and will be transcoded to UTF-8 and
NFC normalized by this function.

Libidn2 Reference Manual 4 / 12

It is recommended to supply both ulabel and alabel for better error checking, but supplying just one of them will work.
Passing in only alabel is better than only ulabel . See RFC 5891 section 4 for more information.

After version 0.11: insertname may be NULL to test conversion of src without allocating memory.

Parameters

ulabel input zero-terminated locale
encoded string, or NULL.

alabel
input zero-terminated ACE
encoded string (xn--), or
NULL.

insertname
newly allocated output
variable with name to
register in DNS.

flags optional idn2_flags to
modify behaviour.

Returns

On successful conversion IDN2_OK is returned, when the given ulabel and alabel does not match each other IDN2_UALABEL_MISMATCH
is returned, when either of the input labels are too long IDN2_TOO_BIG_LABEL is returned, when alabel does does not appear
to be a proper A-label IDN2_INVALID_ALABEL is returned, or another error code is returned.

idn2_strerror ()

const char~*
idn2_strerror (int rc);

Convert internal libidn2 error code to a humanly readable string. The returned pointer must not be de-allocated by the caller.

Parameters

rc return code from another
libidn2 function.

Returns

A humanly readable string describing error.

idn2_strerror_name ()

const char~*
idn2_strerror_name (int rc);

Convert internal libidn2 error code to a string corresponding to internal header file symbols. For example, idn2_strerror_name(IDN2_MALLOC)
will return the string "IDN2_MALLOC".

The caller must not attempt to de-allocate the returned string.

Parameters

Libidn2 Reference Manual 5 / 12

rc return code from another
libidn2 function.

Returns

A string corresponding to error code symbol.

idn2_check_version ()

const char~*
idn2_check_version (const char *req_version);

Check IDN2 library version. This function can also be used to read out the version of the library code used. See IDN2_VERSION
for a suitable req_version string, it corresponds to the idn2.h header file version. Normally these two version numbers match,
but if you are using an application built against an older libidn2 with a newer libidn2 shared library they will be different.

Parameters

req_version version string to compare
with, or NULL.

Returns

Check that the version of the library is at minimum the one given as a string in req_version and return the actual version string
of the library; return NULL if the condition is not met. If NULL is passed to this function no check is done and only the version
string is returned.

idn2_free ()

void
idn2_free (void *ptr);

Call free(3) on the given pointer.

This function is typically only useful on systems where the library malloc heap is different from the library caller malloc heap,
which happens on Windows when the library is a separate DLL.

Parameters

ptr pointer to deallocate

Types and Values

IDN2_VERSION

#define IDN2_VERSION "0.14"

Pre-processor symbol with a string that describe the header file version number. Used together with idn2_check_version() to
verify header file and run-time library consistency.

IDN2_VERSION_NUMBER

Libidn2 Reference Manual 6 / 12

#define IDN2_VERSION_NUMBER 0x00140000

Pre-processor symbol with a hexadecimal value describing the header file version number. For example, when the header version
is 1.2.4711 this symbol will have the value 0x01021267. The last four digits are used to enumerate development snapshots, but
for all public releases they will be 0000.

IDN2_LABEL_MAX_LENGTH

#define IDN2_LABEL_MAX_LENGTH 63

Constant specifying the maximum length of a DNS label to 63 characters, as specified in RFC 1034.

IDN2_DOMAIN_MAX_LENGTH

#define IDN2_DOMAIN_MAX_LENGTH 255

Constant specifying the maximum size of the wire encoding of a DNS domain to 255 characters, as specified in RFC 1034.
Note that the usual printed representation of a domain name is limited to 253 characters if it does not end with a period, or 254
characters if it ends with a period.

enum idn2_flags

Flags to IDNA2008 functions, to be binary or:ed together. Specify only 0 if you want the default behaviour.

Members

IDN2_NFC_INPUT

Normalize
in-
put
string
us-
ing
nor-
mal-
iza-
tion
form
C.

IDN2_ALABEL_ROUNDTRIP

Perform
op-
tional
IDNA2008
lookup
roundtrip
check.

IDN2_TRANSITIONAL

Perform
Uni-
code
TR46
tran-
si-
tional
pro-
cess-
ing.

Libidn2 Reference Manual 7 / 12

IDN2_NONTRANSITIONAL

Perform
Uni-
code
TR46
non-
transitional
pro-
cess-
ing.

enum idn2_rc

Return codes for IDN2 functions. All return codes are negative except for the successful code IDN2_OK which are guaranteed
to be

1. Positive values are reserved for non-error return codes.

Note that the idn2_rc enumeration may be extended at a later date to include new return codes.

Members

IDN2_OK
Successful
re-
turn.

IDN2_MALLOC

Memory
al-
lo-
ca-
tion
er-
ror.

IDN2_NO_CODESET

Could
not
de-
ter-
mine
lo-
cale
string
en-
cod-
ing
for-
mat.

IDN2_ICONV_FAIL

Could
not
transcode
lo-
cale
string
to
UTF-
8.

Libidn2 Reference Manual 8 / 12

IDN2_ENCODING_ERROR

Unicode
data
en-
cod-
ing
er-
ror.

IDN2_NFC

Error
nor-
mal-
iz-
ing
string.

IDN2_PUNYCODE_BAD_INPUT

Punycode
in-
valid
in-
put.

IDN2_PUNYCODE_BIG_OUTPUT

Punycode
out-
put
buffer
too
small.

IDN2_PUNYCODE_OVERFLOW

Punycode
con-
ver-
sion
would
over-
flow.

IDN2_TOO_BIG_DOMAIN

Domain
name
longer
than
255
char-
ac-
ters.

IDN2_TOO_BIG_LABEL

Domain
la-
bel
longer
than
63
char-
ac-
ters.

IDN2_INVALID_ALABEL

Input
A-
label
is
not
valid.

Libidn2 Reference Manual 9 / 12

IDN2_UALABEL_MISMATCH

Input
A-
label
and
U-
label
does
not
match.

IDN2_INVALID_FLAGS

Invalid
com-
bi-
na-
tion
of
flags.

IDN2_NOT_NFC

String
is
not
NFC.

IDN2_2HYPHEN

String
has
for-
bid-
den
two
hy-
phens.

IDN2_HYPHEN_STARTEND

String
has
for-
bid-
den
start-
ing/end-
ing
hy-
phen.

IDN2_LEADING_COMBINING

String
has
for-
bid-
den
lead-
ing
com-
bin-
ing
char-
ac-
ter.

Libidn2 Reference Manual 10 / 12

IDN2_DISALLOWED

String
has
dis-
al-
lowed
char-
ac-
ter.

IDN2_CONTEXTJ

String
has
for-
bid-
den
context-
j
char-
ac-
ter.

IDN2_CONTEXTJ_NO_RULE

String
has
context-
j
char-
ac-
ter
with
no
rull.

IDN2_CONTEXTO

String
has
for-
bid-
den
context-
o
char-
ac-
ter.

IDN2_CONTEXTO_NO_RULE

String
has
context-
o
char-
ac-
ter
with
no
rull.

Libidn2 Reference Manual 11 / 12

IDN2_UNASSIGNED

String
has
for-
bid-
den
unas-
signed
char-
ac-
ter.

IDN2_BIDI

String
has
for-
bid-
den
bi-
directional
prop-
er-
ties.

IDN2_DOT_IN_LABEL

Label
has
for-
bid-
den
dot
(TR46).

IDN2_INVALID_TRANSITIONAL

Label
has
char-
ac-
ter
for-
bid-
den
in
tran-
si-
tional
mode
(TR46).

IDN2_INVALID_NONTRANSITIONAL

Label
has
char-
ac-
ter
for-
bid-
den
in
non-
transitional
mode
(TR46).

Libidn2 Reference Manual 12 / 12

Chapter 2

Index

I
idn2_check_version, 5
IDN2_DOMAIN_MAX_LENGTH, 6
idn2_flags, 6
idn2_free, 5
IDN2_LABEL_MAX_LENGTH, 6
idn2_lookup_u8, 1
idn2_lookup_ul, 3
idn2_rc, 7
idn2_register_u8, 2
idn2_register_ul, 3
idn2_strerror, 4
idn2_strerror_name, 4
IDN2_VERSION, 5
IDN2_VERSION_NUMBER, 5

	Libidn2 Overview
	idn2

	Index

